
A CHERI C Memory Model for Verified Temporal
Safety

Vadim Zaliva
University of Cambridge

Cambridge, United Kingdom
Vadim.Zaliva@cl.cam.ac.uk

Kayvan Memarian
University of Cambridge

Cambridge, United Kingdom
Kayvan.Memarian@cl.cam.ac.uk

Brian Campbell
University of Edinburgh

Edinburgh, United Kingdom
Brian.Campbell@ed.ac.uk

Ricardo Almeida
University of Edinburgh

Edinburgh, United Kingdom
Ricardo.Almeida@ed.ac.uk

Nathaniel Filardo
University of Cambridge

Cambridge, United Kingdom
nwf20@cam.ac.uk

Ian Stark
University of Edinburgh

Edinburgh, United Kingdom
Ian.Stark@ed.ac.uk

Peter Sewell
University of Cambridge

Cambridge, United Kingdom
Peter.Sewell@cl.cam.ac.uk

Abstract
Memory safety concerns continue to be a major source of
security vulnerabilities. The CHERI architecture, as instan-
tiated in prototype CHERI-RISC-V cores, the Arm Morello
system, and Microsoft’s CHERIoT embedded core, provides
fine-grained memory access control through unforgeable
hardware capabilities. The impact of CHERI on spatial mem-
ory safety is well understood. This paper systematically ex-
amines temporal memory safety within CHERI C – a dialect
of the C programming language for CHERI – and proposes a
formal approach to defining and ensuring it. In particular: 1)
we examine the impact of five existing capability revocation
mechanisms on CHERI C semantics and present a specialised
object memory model tailored to CHERI C; 2) we introduce
a new CHERI-specific pointer provenance tracking scheme;
and 3) we formally define the security guarantees provided
by this memory model, supported by a Coq proof of their
correctness, expressed as invariants of the memory state.

CCS Concepts: • Software and its engineering→ Com-
pilers; Formal language definitions; Software functional
properties; • Theory of computation→ Semantics and
reasoning; • Security and privacy→ Logic and verifica-
tion.

Keywords: CHERI, memory safety, temporal safety, formal
verification, memory model, pointer provenance, C language,
Coq, capability revocation

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CPP ’25, January 20–21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1347-7/25/01
https://doi.org/10.1145/3703595.3705878

ACM Reference Format:
Vadim Zaliva, Kayvan Memarian, Brian Campbell, Ricardo Almeida,
Nathaniel Filardo, Ian Stark, and Peter Sewell. 2025. A CHERI C
Memory Model for Verified Temporal Safety. In Proceedings of
the 14th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (CPP ’25), January 20–21, 2025, Denver, CO, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3703595.
3705878

1 Introduction
Memory handling errors in C and C++ code continue to ex-
pose systems to severe security vulnerabilities, and form the
core of many exploit chains used in the wild. For example,
they are involved in around 70% of vulnerabilities tracked
by Project Zero [17], and hold prominent positions in the
Common Weakness Enumeration project’s list of the most
dangerous and most stubborn software weaknesses [33]. A
considerable amount of effort has been made to mitigate
these vulnerabilities, from static and dynamic code analysis,
through adjusting the execution environment and compila-
tion to reduce exposure, to rewriting code in memory-safe
languages [32]. However, many of these have limitations,
and the sheer volume of legacy code makes rewriting most
code in a safe language a distant prospect.
The CHERI architecture [37, 39] provides a more robust

form of fine-grained memory protection for legacy code by
extending existing instruction set architectures with hard-
ware capabilities. These combine an address with metadata
giving the bounds of the object pointed to, permissions for ac-
cessing it, and an out-of-band validity tag that makes them
unforgeable. This promises a substantial improvement in
safety against memory errors, with the Microsoft Security
Response Center estimating that between one third and two
thirds of vulnerabilities reported to them in 2019 would be
“deterministically mitigated” by CHERI, depending on the

https://orcid.org/0000-0002-9145-3288
https://orcid.org/0000-0003-3723-636X
https://orcid.org/0000-0001-6941-5034
https://orcid.org/0009-0000-1667-1683
https://orcid.org/0009-0002-9698-1503
https://orcid.org/0000-0001-6800-812X
https://orcid.org/0000-0001-9352-1013
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705878
https://doi.org/10.1145/3703595.3705878
https://doi.org/10.1145/3703595.3705878

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

level of protection used [20]. There is substantial and grow-
ing experience with CHERI, including the Arm Morello ex-
perimental application-class implementation [15], multiple
RISC-V designs including the CHERIoTmicrocontroller-class
processor [2], LLVM and GCC ports that can use capabilities
for pointers, and a large body of ported code including a
FreeBSD port with a desktop environment [35].
The current proposed semantics for CHERI C [42] deals

with the consequences of using capabilities for pointers,
which allows C programs to benefit from the hardware’s
built-in protection. This protection provides spatial safety,
where accesses are limited to the addresses of object the
pointer was derived from; for example, a buffer access can-
not overrun into a neighbouring object. Conspicuously ab-
sent, however, is discussion of temporal safety. In this paper,
we enrich the existing proposal with a model of capabil-
ity revocation, define several increasingly stringent security
invariants precluding larger classes of temporal safety vi-
olations, and show that our memory model preserves the
strongest of these invariants.
In the context of the C programming language (and the

CHERI C dialect), temporal safety ensures that memory ob-
jects are accessed only within their intended lifetime. In
particular, two undesirable scenarios are considered: 1) use-
after-free (UAF), where a memory object is accessed after it
has been deallocated but before the underlying address space
has been repurposed; and 2) use-after-reallocation (UAR),
when a pointer to a previously allocated memory block is
used after that memory has been freed and subsequently
reallocated to a new object. Here, reallocation includes any
reuse by the allocator for its own purposes. For some alloca-
tor implementations, there may be no or limited opportunity
for UAF, only UAR; traditional designs relied heavily on in-
band (“intrusive”) data structures to track released space,
reusing the first few words of objects passed to free within
the allocator to hold, for example, pointers to other available
memory. UAR in particular can lead to severe security vul-
nerabilities, as the aliasing of objects invites data corruption
or data exposure. UAF does not involve aliasing, but it, too,
is not without its risks: attempted UAF accesses can cause
faults, as the allocator is free to release the address space and
underlying storage of free objects (such as by unmapping
virtual pages); and the possibility of a UAF likely implies the
possibility of a UAR later, with address space having been
repurposed by the allocator and/or operating system.
As a concrete example, consider Listing 1. This program

performs an allocation, frees the resulting object, and then
makes another allocation of the same size as the first. His-
torically, heap allocators likely placed the two objects in the
same underlying memory: the freed memory would be at
the front of the free list and an exact match for the size re-
quested. That is, pa and qawould be equal after line 9, and, in
most C implementations, p would alias the object reachable
through q. This sets the stage for UAR of a heap (“dynamic

1 #include <stdint.h>

2 #include <stdlib.h>

3

4 int main() {

5 int *p = malloc(4096);

6 ptraddr_t pa = (ptraddr_t)p;

7 free(p);

8 int *q = malloc(4096);

9 ptraddr_t qa = (ptraddr_t)q;

10 /* ... */

11 }

Listing 1. A C example of potential temporal unsafety.

storage duration”) object. Even if qa is not equal to pa and
the memory underlying p is not reallocated, UAF of p after
line 7 could still fault, if the allocator releases said memory.
It is also possible to have UAF or UAR of stack (“automatic
storage duration”) objects.

More generally, all instances of UAF or UAR are attempts
to refer to an object outside of its lifetime, resulting in unde-
fined behaviour (UB) according to ISO C [19, §6.2.4]. Thus,
even though both temporal safety violation scenarios could
not occur in well-defined (that is, without UBs) CHERI C
programs, in the presence of UB, compilers may generate
code attempting illegal accesses. These could be mitigated
by CHERI hardware in the presence of revocation.
In this paper, we will explore CHERI C semantics for

CHERI capability revocationmechanisms, which we describe
in more detail in Section 2.
Another aspect of CHERI C semantics that we discuss in

Section 3 is the subtle relationship between compile-time
pointer provenance tracking (the relationship between point-
ers and corresponding memory allocations used in com-
piler alias analysis) and runtime CHERI memory protections
(hardware-enforced pointer bounds), augmented by a revo-
cation mechanism (as defined in Section 2).

We make the following contributions:
(1) We introduce a new CHERI-specific pointer prove-

nance tracking scheme: PNVI-CHERI, which is concep-
tually simpler than schemes previously proposed for
CHERI C (Section 3).

(2) We present a specialised object memory model tailored
for CHERI C, which is based on PNVI-CHERI and in-
cludes support for a generalised version of five existing
CHERI capability revocation mechanisms; it is defined
in Coq (Section 4).

(3) We integrate our new CHERI memory model (ex-
tracted from the Coq definitions) into existing exe-
cutable CHERI C semantics and test it against an ex-
isting CHERI C semantics test suite (Section 4).

(4) We formally define and prove in Coq the security guar-
antees provided by this memory model, which pre-
cludes both UAF and UAR scenarios. It is applicable to

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

CHERIoT, non-parallel CHERIvoke, both Cornucopia
and Reloaded—right after a full revocation sweep,1 and
the fixed-point of the revocation sweep algorithm for
CheriOS (Section 5).

(5) Additionally, we present a framework for monadic
reasoning, developed during the course of this work,
which may be useful for reasoning about a wide class
of programs that utilise state and error monads (Sec-
tion 6).

Our implementation of the memory model in Coq, along
with proofs, is available in a public Git repository 2.

Several limitations apply to this work, briefly summarised
below. All of them are subjects for future research and are
discussed further in Section 9.

Concurrency. Our memory model does not currently sup-
port concurrency because it is based on a version of the
Cerberus C semantics without support for the C/C++11 con-
currency.

Stack vs Heap. While the semantics of the abstract C
machine and, consequently, our memory model, do not dif-
ferentiate between stack and heap memory, the existing
revocation mechanisms do.

Pointer leakage via memory reuse. The C standard does
not require allocated heap memory to be initialised, leaving
it with indeterminate values. These often reflect the old pro-
gram state from reused memory, but random values would
still be valid. A major risk for CHERI C is that such values
could be valid capabilities to live objects, leading to unin-
tended and covert capability flow. Requiring capability tags
to be reset in new allocations may be sufficient, but it could
incur runtime costs.

2 Revocation
There are several existing attempts to address heap temporal
safety for CHERI C/C++: CHERIvoke [40], Cornucopia [12],
and Cornucopia Reloaded [11] provide replacement alloca-
tors (and novel kernel machinery) for CheriABI processes in
CheriBSD [9], and both the CheriOS [10] and CHERIoT [2, 3]
operating systems have provided spatially- and temporally-
safe shared heap allocators. These efforts have relied on
various sweeping revocation implementations to locate and
invalidate capabilities pointing to freed allocations, in keep-
ing with CHERI’s design desideratum of no additional indi-
rection (through, for example, tables of live objects).

These systems conceptually operate by refining the heap
memory life-cycle, which historically consisted of just a sin-
gle distinction between live and free (or dead). That is, a lo-
cation in heap memory was either considered to be actively
used as part of a live object or available for (re)use. These

1assuming no calls to free() were made during the sweep.
2https://github.com/rems-project/cerberus

systems introduce a new state, quarantined, which describes
memory from released objects to which references (pointers,
capabilities) may yet exist, while free now describes heap
memory to which no references exist (aside from those held
by the heap implementation itself).

The safety guaranteed by these systems is the prevention
of UAR by finding and clearing the tag of all capabilities
with bounds within quarantined regions during a revocation
sweep. (This is permitted by ISO C, as even the value of a
pointer to an object past the end of its lifetime is indeter-
minate; referring back to Listing 1, p and copies thereof are
indeterminate values after line 7.) After the sweep, it is safe
to make available for reuse the address ranges of memory
quarantined before the sweep began. In general, preventing
UAF is seen as less urgent; UAF either accesses quarantined
objects (unaliased and unmodified by the runtime) or faults,
if backing memory is released or if revocation invalidates
the pointer. Concretely, in terms of Listing 1, the promise
is that, by line 10, either 1) pa and qa are guaranteed to be
distinct, because the first allocation was in quarantine when
the second took place; or 2) p is no longer valid, and so the
equality of pa and qa does not imply aliasing of p and q.

An implementation of heap temporal safety via revocation
consists of two primary components: per-allocator quaran-
tine tracking logic and a system-provided sweeping service.
Allocators, which are the runtime basis of the language’s
object model, are responsible for ensuring that address space
undergoes revocation. The system (usually, the kernel) pro-
vides the revocation service to ensure that pointers in “hard-
to-reach” places (especially, machine registers, save areas,
and other kernel state held on behalf of a process), in addition
to (process) memory, are properly swept. The interface be-
tween the two involves allowing the allocator to request that
a sweep begin, a way to monitor the sweep’s progress, and
a concrete representation of quarantine. CheriOS’s sweep
revoked a single contiguous region of address space, while
the CHERIvoke, Cornucopia (Reloaded), and CHERIoT lin-
eage have used a bitmap at the same granularity as CHERI
capability tags. Concurrent (and parallel) revocation imple-
mentations bring significant benefits, but slightly complicate
the interface by requiring that the allocator track when, rel-
ative to a given sweep, an object entered quarantine.

The implementation of such a sweeping service often takes
advantage of privileged architectural mechanisms to accel-
erate its operation, and it is largely these mechanisms that
differentiate the implementations:

CheriOS relied on a custom architectural extension to
clear the tag of loaded capabilities pointing into the re-
gion being reclaimed. Its revocation service was simply
a loop around an atomic load and store to commit to
memory this filtered view of memory.
CHERIvoke was more of a microbenchmark limit study
than a practical implementation. It operated by stopping

https://github.com/rems-project/cerberus

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

all application threads for the duration of the revocation
sweep. To avoid useless work, it proposed an architec-
tural “card marking” scheme, tracking capability stores
in the MMU, which would have allowed skipping pages
without capabilities.
Cornucopia is a “mostly concurrent,” two-phase imple-
mentation built on the above card-marking scheme. First,
Cornucopia attempts to revoke concurrently with the
application, visiting only pages possibly holding capabil-
ities, and tracking which pages are newly- or re-marked
during this work. Second, the application is paused and
only this (hopefully smaller) set of pages are (re)visited.
In practice, this showed significant reduction in tail laten-
cies relative to a one-phase approximation of CHERIvoke.
Cornucopia Reloaded continues using Cornucopia’s
card-marking scheme, but only to avoid pages devoid of
capabilities. Using a novel architectural mechanism of
capability load faults to front-run the application, it pro-
vides a view of memory as if revocation had completed
as soon as it began. A background scan ensures that
all pages are revoked. Tail latencies showed significant
improvement over Cornucopia.
CHERIoT takes advantage of its small scale to have its ca-
pability load instruction perform similar front-running of
the application. Concretely, the load instruction snoops
on quarantine state, now architectural and held in mem-
ory tightly coupled to the (singular) CPU pipeline. Its
revocation service is, similar to that of CheriOS, simply
a commitment of this filtered view to memory; software
implementation is possible, but there is hardware accel-
eration in the CHERIoT-Ibex implementation [3, §3.3.3].

Beyond this basic framework, additional architectural ex-
tensions can enable prompt invalidation of pointers into quar-
antine. These facilities serve to close the distinction between
UAF and UAR, preventing access even to quarantined ad-
dress space not yet recycled, providing software the illu-
sion that revocation is instantaneous (while still allowing
the actual revocation and eventual address reuse to occur
asynchronously, concurrently, and/or in parallel with the
program). CHERIoT’s front-running of the application in fact
ensures that no valid capability can be obtained with bounds
in the quarantined region, regardless of whether revocation
is actively ongoing in the background (whereas Reloaded’s
front-running happens only during a revocation sweep and
is best considered a performance optimization and not a secu-
rity mechanism). The sketched hybridization of CHERI and
memory coloring [11, §7.3] proposes colors as a replacement
for quarantine bitmaps and renders mis-colored capabilities
inert, even if tagged. In the other systems above, the validity
of capabilities with bounds in quarantine will depend on the
algorithm’s details and the timing of the revocation sweep.

Below, we extend the CHERI C memory model with a
revocation mechanism, a conceptual simplification used to
approximate the effects of these revocation implementations.

Caveat: Addresses are Visible at Runtime in C. We
note in passing that revocation is concerned solely with
pointers and, importantly, does not consider addresses as
needing special handling; after a pointer-to-integer cast (ex-
cept to (u)intptr_t), the integer is handled as any other
integer would be, including being ignored by the revoker.
This means that software may observe that a particular ad-
dress has been used to hold a series of objects (with disjoint
lifetimes).While this cannot give rise to violations ofmemory
safety, it can still be a source of bugs. Consider a hash-table
associating metadata to objects, keyed on addresses; freeing
an object without removing the associated metadata is pos-
sible, and stale metadata may be erroneously re-associated
with a different object. We consider these to be logic bugs
separable from safety concerns. One possible way of address-
ing this is by attaching provenance information to integers
created from pointers, similar to the PVI (“provenance via
integers”) model [28], but this model was shown to add sig-
nificant complexity to the semantics of integer operations,
affecting their algebraic properties, and disallowing common
optimisations.

3 Provenance, Capabilities, and Revocation
The concept of pointer provenance is not explicitly mentioned
in the ISO C standard [19], but it was confirmed by WG14
committee discussions concerning DR260 [38]. In particular,
it was concluded:

In addition the C Standard does not prohibit
an implementation from tracking the prove-
nance of the bit-pattern representing a value.
An indeterminate value happening to have
a bit pattern that is identical to a bit pattern
representing a determinate value is not suf-
ficient to allow access to the indeterminate
value free from undefined behavior.

This led to the development, in consultation with the ISO
C standards committee, of the working draft Technical Spec-
ification [16], and there is ongoing effort to publish it as an
ISO Technical Specification.

The concept of pointer provenance allows the C abstract
machine to track the origin of pointer values, and this infor-
mation can be used by the semantics to justify the soundness
of existing compiler optimisations that are based on alias
analysis. It must be noted that provenance is not normally
explicit at runtime, but rather meta-information associated
with pointers in the language semantics, and used to define
when accesses give rise to undefined behaviour.

Consider the example shown in Listing 2. In the absence
of pointer provenance tracking, most compiler optimisations
based on alias analysis cannot be justified, as demonstrated

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdint.h>

4

5 int y=2, x=1;

6 int main() {

7 int *p = &x + 1;

8 int *q = &y ;

9 printf("Addresses: p=%p q=%p\n", (void*)p, (void*)q);

10 if((ptraddr_t)&p == (ptraddr_t)&q) {

11 *p = 11; // does this have undefined behaviour ?

12 printf ("x=%d y=%d *p=%d *q=%d\n", x, y, *p, *q);

13 }

14 }

Listing 2. A program raising a question of pointer prove-
nance, slightly modified from an example in [16, §1.2].

by the disagreement in how different compilers compile this
program. Depending on their decision on whether p and
q could alias, the optimisation could lead to the resulting
programs printing different values, as was shown for GCC,
Clang, and ICC in [16]. Several flavours of provenance track-
ing are discussed in that work, but we focus on the PNVI
family – “Provenance Not Via Integers” – where provenance
is associated only with pointer types. Applying the PNVI-
ae-udi provenance model in particular makes it clear that
the pointer p is associated with the allocation of x, and since
it has been altered via pointer arithmetic to point one-past
the original allocation, an attempt to write using it is indeed
undefined behaviour.
The goal of revocation, as described in Section 2, is to

remove from the system all pointers into spans of address
space that once held allocations. Central to this concept of
revocation is the requirement that any given pointer can
be associated with its originating allocation. This associa-
tion must be possible even if the pointer has been offset
within the object, making it a so-called interior pointer, or
has been taken one-past-the-end of the allocation, out of
bounds. This gives rise to a capability derivation tree rela-
tionship between pointers: the allocator internally holds a
pointer to its heap, from which it derives pointers to individ-
ual allocations, and from which the application derives, for
example, interior pointers. The pointer derivation relation-
ship is monotonic, which means derived pointers’ bounds
and permissions cannot exceed those of the pointers they are
derived from. CHERI, unlike some other capability systems,
does not explicitly track this relationship; nevertheless, its
capability tag bits can be thought of as attesting to the exis-
tence of a derivation chain from a primordial, root capability.
The CHERI C semantics proposed in [42] recommends

PNVI-ae-udi for pointer provenance tracking. We claim that
a significant part of PNVI-ae-udi is not applicable to CHERI
C while some other parts of it could expressed using meta

information provided by CHERI. To this end we propose a
conceptually simpler provenance tracking model for CHERI
C, which we term PNVI-CHERI.

PNVI-CHERI is based on the PNVI-plainmodel, rather than
on PNVI-ae-udi. The “udi” part of PNVI-ae-udi stands for user-
disambiguation for provenance recovery for pointers that
are one-past a storage instance. This is no longer applicable,
as the PNVI-CHERI provenance lookup mechanism proposed
below has no ambiguity even for one-past pointers. The “ae”
part of PNVI-ae-udi stands for exposed-address, which is also
not relevant in CHERI C, as the exposuremechanism features
only in the context of integer-to-pointer casts. CHERI C per-
mits such casts only from the capability-carrying intptr_t

and uintptr_t types; round-trip casts via these types pre-
serve capability metadata.
The key observation is that all PNVI mechanisms de-

scribed in [16] associate additional metadata, such as an allo-
cation ID, with pointer objects. However, in CHERI C, point-
ers already contain sufficient meta-information to recover
their provenance. Thus, semantics can implement prove-
nance tracking by utilising and estimating this runtime in-
formation instead.
The PNVI-CHERI lookup mechanism uses capability

bounds instead of its address to locate the associated alloca-
tion. Each pointer to a newly allocated object will initially
have its bounds within the footprint of the corresponding
allocation. Due to the capability monotonicity property [36],
the bounds can never escape the original allocation footprint.
Thus, the allocation corresponding to a given pointer can be
found by comparing its bounds3 to a list of existing live and
quarantined allocations, as shown in Algorithm 1:

Algorithm 1 Capability provenance lookup in PNVI-CHERI
Require: Capability 𝑐𝑎𝑝 , Allocation Map 𝑎𝑙𝑙𝑜𝑐𝑚𝑎𝑝

Ensure: Returns Some(alloc_id) if found, or None.
1: function lookup_provenance(cap, allocmap)
2: if ¬ get_tag(cap) then
3: return None // Invalid capability
4: end if
5: 𝑏𝑎𝑠𝑒 ← get_base(𝑐𝑎𝑝) // Get the lower bound
6: for all (𝑎𝑙𝑙𝑜𝑐_𝑖𝑑, (𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒, 𝑠𝑡𝑎𝑟𝑡, 𝑠𝑖𝑧𝑒)) ∈ 𝑎𝑙𝑙𝑜𝑐𝑚𝑎𝑝

do // Iterate over key-value pairs in the map
7: if 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑏𝑎𝑠𝑒 < 𝑠𝑡𝑎𝑟𝑡 + 𝑠𝑖𝑧𝑒 then
8: return Some(alloc_id) // Return the allocation ID if

base is within the range
9: end if
10: end for
11: return None // No allocation found for the base address
12: end function

There is one special case where the lower bound of a ca-
pability could escape the original allocation. It arises when

3It is sufficient to check the lower bound only.

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

object bounds are set one-past the original allocation, but
the bounds length is set to zero. This could only be done in
CHERI C by using cheri_bounds_set intrinsic, as in the C
language there is no legitimate way to create a 0-length ob-
ject. Zero-length capabilities confer no authority and might
be considered a nuisance encoding artefact rather than a
meaningful semantic object. We choose not to allow them
and propose to specify in CHERI C semantics that setting
the capability bounds length to zero with cheri_bounds_set

is undefined behaviour.
Since the revocation algorithms we are considering re-

move regions from quarantine only after all capabilities as-
sociated with them have been revoked, all valid capabilities
are guaranteed to be resolved by the lookup mechanism
described above to either live or quarantined allocations.
The ISO C [19] + PNVI-ae-udi [16], as well as CHERI C

semantics rules, call for several checks dependent on pointer
provenance to flag various undefined behaviours, such as
out-of-bounds access or dangling pointers:
(1) Checking whether a pointer refers to a live allocation.
(2) Checking whether two pointers have the same prove-

nance when subtracted or compared using relational
operator such as <.

(3) Checking whether a pointer is inside the bounds of
the corresponding memory allocation’s footprint.

In PNVI-CHERI, Algorithm 1 allows finding the corre-
sponding allocation record for any valid pointer. The re-
turned allocation will either be live or quarantined, as speci-
fied by a boolean flag in the allocation record in the mem-
ory state described in Section 4. Checking whether two point-
ers have the same provenance can be trivially done by look-
ing up and comparing their allocations. Finally, the capability
bounds checks supersede the allocation bounds check, as
they cannot exceed the footprint of the allocation.

To revisit our example in Listing 2, the bounds of pointer
&x will remain unchanged after its address was incremented
in line 7, and on line 11 it could be unambiguously resolved
to belong to allocation x. The write attempt could not only
then be flagged as UB, but additionally, if the compiler chose
to generate code attempting the write anyway, it would be
intercepted and prevented by the CHERI runtime.

4 CHERI C Memory Model
We have defined in Coq a memory object model for CHERI C
that employs the PNVI-CHERI provenance tracking, as intro-
duced in Section 3. This builds on the existing formalisation
of CHERI C from [42]. It is defined as an instantiation of the
memory model interface of the Cerberus C semantics [27],
which gives us an executable oracle for a large fragment
of the C11 language equipped with our CHERI C memory
model in place of the PNVI models.

Cerberus defines the semantics of C11 as an elaboration of
the syntax of C expressions and statements into expressions

in a Core language, which in turn is given an operational
semantics. Details regarding the memory state, pointer val-
ues, and memory operations (loads, stores, . . .) are abstracted
by a memory model interface from the elaboration and the
operational semantics of Core. This allows the two to be inte-
grated with minimal or no modifications to different memory
models, while avoiding the need to rework aspects of the
semantics of C11 unrelated to memory and the semantics of
pointers.
As required by the interface, the memory model defines

a type for the memory state, and operations which may
use or modify this state (e.g. allocation of objects, store).
These stateful operations use a memM monad, which com-
bines state and error monads. The interface also defines the
type of pointer values, and constructors and destructors (e.g.
array_shift_ptrval corresponding to pointer arithmetic in
the surface language).
The type mem_state describes the concrete content of

bytes in memory, along with the abstract state of capabilities
and the memory allocation subsystem:

mem_state ≜ allocmap × bytemap × capmap × Z × A
allocation ≜ B × A × N
allocmap ≜ Z ⇀ allocation
bytemap ≜ A ⇀ byte
capmap ≜ A ⇀ B × B × B

A ≜ {𝑥 ∈ Z | 0 ≤ 𝑥 < ADDR_LIMIT}

The memory content consists of bytes addressable via
bounded positive integers (type A), which corresponds to
the bytemap field in the memory state. The map is partial
to account for uninitialised memory, which is treated as
unspecified byte values. In Coq, it is implemented as a finite
map A→ option byte.

Additionally, for each capability-size aligned address, we
store some meta information for the capability that could
potentially be stored at this location (the capmap field of the
memory state). The first piece of this meta information is the
“tag” representing the capability’s validity. The additional
two boolean flags respectively track whether the capability
tag and bounds values are unspecified.4 The capability at
a given location is valid if and only if there exists a map-
ping in capmap for its address, for which the tag is set, and
tag_unspecified is false.
All memory is allocated and released via the correspond-

ing methods of the memory interface. The state of the alloca-
tor is maintained as a list of allocations identified by a unique
allocation ID (the allocmap field of the memory state). Each
allocation object bears a boolean flag indicating whether
this allocation is in quarantine, along with the starting ad-
dress and the allocation size in bytes. All new allocations
are “live” and recorded with the quarantine flag set to false.

4See [42] for a discussion on why tags and bounds could be unspecified.

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

When memory is released, the corresponding allocation is
put into quarantine by raising this flag in the allocation
record. Finally, after quarantined allocations are processed
by the revocation sweep, their records are expunged from
allocmap.
The two remaining components of the memory state

are the high watermark for allocation IDs, next_alloc_id,
and the low watermark for already allocated memory,
last_address.
The low-level memory operations attempt to faithfully

simulate CHERI hardware. In particular, they ensure that
all memory accesses require valid capabilities, which en-
force access bounds and permissions. They also guard the
integrity of the capabilities, with any attempts that could lead
to forging capabilities (such as modifying individual bytes of
a capability representation in memory) resulting in the tag
being cleared. Additionally, valid capabilities can be stored
and loaded only from capability-size aligned addresses.

The high-level interface of thememorymodel provides the
memory operations and constructors/destructors for pointer
values and integer values needed by the Core language used
to elaborate C11.
The memcpy function from the standard C library is im-

plemented as part of the memory model. Unlike in ISO C,
in CHERI C, it cannot be implemented as a simple byte-
copy loop because it needs to preserve valid capabilities at
capability-size aligned locations that fit completely in the
copied region.
There are several existing CHERI implementations that

differ in address width and bounds and permission encoding
schemes, and the definitions of capabilities’ fields, such as
flags, object type, and seal type. Many of these details are not
pertinent to CHERI C semantics, and we have abstracted
them in our memory model implementation using the Coq
module system. Some of these types, like object type, are
opaque and only require an equality predicate, while others,
at an abstract level, expose a minimal required set of proper-
ties. For example, the permissions set may vary, but at the
very least, we need to distinguish between read and write
permissions in the memory model. For the abstract address
type, the value is opaque, but the interface provides bitwise
complement, equality, less than operations, and proof that
the latter is irreflexive.
Additionally, following from the Cerberus API, the se-

mantics is parametrised by a Implementation module type,
which provides various implementation-defined parameters,
such as storage sizes for scalar types (integers, floats, and
pointers) and their alignment constraints.
Finally, some aspects of the CHERI C semantics and the

memory model, in particular, are controlled by a Switches

module type. This is a mechanism in the Cerberus model
to select between semantic “flavours” (e.g. whether are not
relational operators between pointers to disjoint objects is
given defined semantics). In the executable semantics, some

of these can be controlled via command-line options. One
switch, in particular, relevant to this paper, enables instant
revocation. The revocation sweep is implemented as a method
of the memory model interface that can be synchronously
called at any time. In the instant revocation mode (controlled
by a switch), it is automatically invoked at the end of the
kill method (which models the end of the lifetime of an
object).
This fine-grained parametrisation allows the memory

model to be potentially instantiated, for example, for 32-
bit or 64-bit architectures, using Morello or RISC-V flavours
of CHERI capabilities, with instant or delayed revocation.

The executable version of the semantics parametrises the
memory model to emulate the 64-bit Morello architecture, in-
cluding capabilities encoding and operations as implemented
by [1].

Our PNVI-CHERI memory model was integrated into the
Cerberus executable semantics. Apart from our memory
model, Cerberus is implemented in OCaml, and we extracted
OCaml code from Coq and interfaced it with the rest of
the implementation. It successfully passed a semantics test
suite of 94 tests, covering various aspects of CHERI C seman-
tics, showing no discrepancies with the previous PNVI-ae-
udi-based CHERI C semantics. These results give us added
confidence that PNVI-CHERI is a suitable replacement for
PNVI-ae-udi in CHERI C.

5 Memory Invariants
What guarantees of temporal safety does PNVI-CHERI pro-
vide? To answer this, we must consider the properties of
the PNVI-CHERI -based memory model. The memory model
serves as a stateful interface between CHERI C semantics
and the memory state. We can impose a memory invariant
that must hold for any sequence of memory model method
invocations, provided that the initial state satisfies this in-
variant It may include unreachable states, as the actual state
transition graph is constrained by the semantics.

In the Cerberus semantics, all objects, including local vari-
ables, reside in memory. Access to memory is granted only
via capabilities; hence, the set of live capabilities in memory
defines the set of memory regions accessible to a C program.
By expressing an invariant that places constraints on these
available capabilities, we can reason about potential risks
of accessing freed or quarantined memory in the context of
temporal memory safety.

In this section, we present several invariants on the state of
our PNVI-CHERI memory model, corresponding to different
revocation algorithms.

5.1 Base
The base invariant only enforces internal consistency of
the memory model data structure and does not place any
restrictions on memory content:

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

∀𝑚 = (am, bm, 𝑐𝑚, next_alloc_id, last_address),
∧ ∀𝑖, 𝑗 ∈ dom(am), 𝑖 ≠ 𝑗 =⇒
am(𝑖) = (_, start𝑖 , len𝑖) ∧ am(𝑗) = (_, start𝑗 , len𝑗) =⇒
start𝑖 + len𝑖 ≤ start𝑗 ∨ start𝑗 + len𝑗 ≤ start𝑖
∨ len𝑖 = 0 ∨ len𝑗 = 0 (1)
∧ ∀𝑥 ∈ dom(am), am(𝑥) = (quarantine, start, len) =⇒
start + len < ADDR_LIMIT (2)
∧ ∀𝑘 ∈ dom(𝑐𝑚), 𝑘 mod PTR_ALIGN = 0 (3)
∧ ∀𝑘 ∈ dom(am), 𝑘 < next_alloc_id (4)
∧ ∀𝑥 ∈ dom(am), am(𝑥) = (_, start, _) =⇒
start ≥ last_address (5)

Clause (1) ensures that allocations do not overlap.
Clause (2) states that all allocations must fit in the address
space. Clause (3) states that all capability metadata stored in
the capmap map are for pointer-aligned addresses. Clause (4)
states that next_alloc_id is indeed a high watermark for al-
location IDs. Finally, Clause (5) states that last_address is
indeed the low watermark for allocated memory blocks (the
allocator starts from the top and allocates downwards in the
address space).

The invariant does not impose any restrictions on capabili-
ties in the memory, and any valid capability in memory could
potentially have access to any memory location, regardless
of the region it belongs to: live, quarantined, or free.

5.2 The “Dirty” Invariant (Between Sweeps)
This invariant applies to the memory state for CHERIvoke,
CheriOS, Cornucopia and Cornucopia Reloaded in the “dirty”
state (between sweeps). In this state, there may exist capabil-
ities in memory pointing to regions which have been freed
but not yet processed by the revocation sweep pass, and
thus are living in quarantine. The dirty memory invariant in
addition to the base invariant includes the following clause:

∀addr, g, cm(addr) = (true, _, false) =⇒
∀bs, fetch_bytes(bm, addr, PTR_SIZE) = bs =⇒
∃c, decode_cap(bs) = c∧
∃base, size, alloc_id,
am(alloc_id) = (_, base, size)∧
base ≤ cap_get_base(c)∧
cap_get_base(c) < base + size (6)

In Clause (6), fetch_bytes is a function which returns a
list of option byte values from bytemap for a given address
range, decode_cap attempts to construct a capability from
these bytes, and cap_get_base returns the lower bound of
the capability.

The invariant as whole states that for all addresses with
a valid tag in capmap, there should be a corresponding byte
region that decodes as a capability, and there must be an allo-
cation (live or quarantineed) that includes the lower bound
of this capability. Or in plain English:

Property 1. Any tagged capability in memory allows access
only within the bounds of live or quarantined allocations.

5.3 The “Clean” Invariant (Post-Sweep)
The next invariant describes the state of the memory in
the case of instant revocation: as if a revocation sweep was
executed each time immediately after free(). This matches
one of the deployment scenarios for CHERIvoke (without
parallelism) described in [40]. Coincidentally, it also applies
to CHERIoT. For Cornucopia and Reloaded, it describes the
state of the memory right after a full revocation sweep, as-
suming no other calls to free() were made during the sweep.
It is also applicable to the fixed-point of the revocation sweep
algorithm for CheriOS.
The clean memory invariant includes base and dirty and

the following additional clause:
∀𝑥 ∈ dom(am), am(𝑥) = (false, _, _) (7)

Clause (7) states that all allocations are live (the
quarantine flag is false). Freed allocations are placed into
quarantine, and the quarantine list is emptied by the revoca-
tion sweep. This improved security property could be stated
in English as:

Property 2. Any tagged capability in memory allows access
only within the bounds of live allocations.

It could be shown this invariant is stronger that dirty (clean
implies dirty).
Memory regions and access to them, as allowed by in-

variants, are shown in Figure 1. The base invariant does not
impose any restrictions. The dirty invariant gives access to
both live and quarantined memory, while the clean invariant
gives access only to live memory.

Live

Clean

Dirty

Base

Quarantine

Free

Figure 1. Invariants and accessible memory

6 Proving Invariants
We have proven in Coq that our memorymodel preserves the
clean invariant, the strictest of the invariants we defined. To
recall from Section 4, the memory model interface contains

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

stateless and stateful operations. Only the latter can change
thememory state.We have proven that all stateful operations
of the memory model preserve the memory invariant.
The high-level proof statements are expressed with the

help of the logical typeclass: Class PreservesInvariant

{invr: mem_state_r → Prop} {T:Type} (s:mem_state_r)(M:

memM T): Prop. The class has a single constructor which
states that if we start from a given state that satisfies the
invariant predicate, the result of stateful operations will
be either an error or will have a state satisfying the same
invariant. The instances are universally quantified for all
arguments of a given method. For example, Listing 3 shows
the instantiation (with proof omitted) for the kill operation
of the memory model:

1 Instance kill_PreservesInvariant

2 (loc: location) (is_dyn: B) (ptr: pointer_value):

3 ∀ s, PreservesInvariant mem_invariant s

4 (kill loc is_dyn ptr).

Listing 3. PreservesInvariant instance for kill

We have proven all 36 instances of PreservesInvariant
for high-level operations of the memory model as well
as for many auxiliary functions. For functions that are
known not to modify the state, we have proven in-
stances of the SameState typeclass, which is similar to
PreservesInvariant but for operations which are executed
in memMmonad but do not modify state. Then, we have proven
that SameState implies PreservesInvariant.
Let’s dive a little deeper into our proof techniques.

Our memM monad is an instance of our “error with state”
errS monad, parameterised by memory state and memory

error types: Definition memM := errS mem_state memMError.

An abridged definition of the errS monad, using typeclasses
from ExtLib [26], is shown in Listing 4.

1 Variable (St : Type) (ErrT: Type).

2
3 Notation err := (sum ErrT).

4 Definition errS A := St → (St*(ErrT+A)).

5 Instance Monad_errS: Monad errS.

6 Instance Exception_errS : MonadExc ErrT errS.

7 Instance State_errS: MonadState St errS.

8 Definition evalErrS {A:Type} (c:errS A) (initial:St): err A.

9 Definition execErrS {A:Type} (c:errS A) (initial:St): err St.

Listing 4. errS monad

The evalErrS returns a value, and execErrS returns the
state. Additional operations (not shown) provided by the
state and exception monads are get, put, update, and raise.

Stateful memory model methods are written in a monadic
style within the memM monad, where operations are se-
quenced using bind, values are injected with ret, and errors
are flagged using raise. The state can be examined using
get and implicitly modified using put or update.

The most burdensome aspect of reasoning deals with se-
quencing computations using bind. We defined several rel-
evant lemmas (shown in Listing 5) that could be useful in
different contexts for reasoning about sequenced computa-
tions.

1 Variable T T': Type.

2 Variable m: memM T'.

3 Variable c: T' → memM T.

4 Variable s: mem_state.

5
6 Instance bind_PreservesInvariant:

7 PreservesInvariant s m →
8 (∀ s' x, PreservesInvariant s' (c x)) →
9 PreservesInvariant s (bind m c).

10
11 Instance bind_PreservesInvariant_full:

12 invr s →
13 (∀ s' x, m s = (s', inr x) →
14 (match execErrS (c x) s' with

15 | inl _ ⇒ True

16 | inr b ⇒ invr b

17 end)) →
18 PreservesInvariant s (bind m c).

19
20 Instance bind_PreservesInvariant_value:

21 (invr s → (∀ s' x, m s = (s', inr x) →
22 (invr s' ∧ PreservesInvariant s' (c x)))) →
23 PreservesInvariant s (bind m c).

Listing 5. PreservesInvariant instances for bind
The simplest one is bind_PreservesInvariant, which

does not expose the bound variable and assumes that
the continuation is always invariant-preserving. The
bind_PreservesInvariant_full lemma allows reasoning
about the value of the bound variable 𝑚 and the inter-
mediate state 𝑠′, but does not require the computation 𝑚

to preserve the invariant. It is useful in cases where a se-
quence of computations preserves an invariant while the
individual steps do not necessarily do so. The last one,
bind_PreservesInvariant_value, allows reasoning about
the value of the bound variable 𝑥 and the intermediate state
𝑠′, which must also satisfy the invariant.

Some additional lemmas for monadic reasoning are shown
in Listing 6.

1 Variable s: mem_state.

2 Variable T: Type.

3
4 Instance bind_get_PreservesInvariant

5 {c: mem_state → memM T}:

6 PreservesInvariant s (c s) →
PreservesInvariant s (bind get c).

7
8 Instance get_PreservesInvariant: PreservesInvariant s get.

9
10 Instance ret_PreservesInvariant:

11 ∀ (x:T), PreservesInvariant s (ret x).

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

12
13 Instance raise_PreservesInvariant

14 ∀ e, PreservesInvariant s (raise e).

15
16 Instance update_PreservesInvariant

17 {f: mem_state → mem_state}:

18 (invr s → invr (f s)) →
19 PreservesInvariant s (update f).

20
21 Instance put_PreservesInvariant:

22 ∀ s', invr s' → PreservesInvariant s (put s').

23
24 Instance put_PreservesInvariant_dep:

25 ∀ s', (invr s → invr s') → PreservesInvariant s (put s').

Listing 6. Additional PreservesInvariant instances
A special case of bind applied to get, found in

bind_get_PreservesInvariant, exploits the fact
that get does not modify the state (a fact also
used in get_PreservesInvariant). The ret in
ret_PreservesInvariant is trivially preserving as it
does not modify the state. The raise operation raises
an error, which satisfies the PreservesInvariant for-
mulation, as proven by raise_PreservesInvariant. In
update_PreservesInvariant, the update is state-preserving
as long as the state transition function is also state-
preserving. Finally, for the put operation, we have two
lemmas. In the first one, put_PreservesInvariant, there is
no relation between the original state 𝑠 and the new state
𝑠′ as long as 𝑠′ satisfies the invariant. In the second one,
put_PreservesInvariant_dep, the invariant compliance of
𝑠′ depends on that of 𝑠 .

Manual proving of thousands of lines of code turned out
to be tedious, so we wrote some Ltac automation to aid with
it. For example, an abridged version of the preserve_step

tactic is shown in Listing 7.

1 Ltac preserves_step :=

2 match goal with

3 |[⊢ PreservesInvariant _ _ (bind get _)] ⇒
4 apply bind_get_PreservesInvariant

5 |[⊢ PreservesInvariant _ _ (bind _ _)] ⇒
6 apply bind_PreservesInvariant

7 |[⊢ PreservesInvariant _ _ (raise _)] ⇒
8 apply raise_PreservesInvariant

9 |[⊢ PreservesInvariant _ _ (ret _)] ⇒
10 apply ret_PreservesInvariant

11 |[⊢ PreservesInvariant _ _ get] ⇒
12 apply get_PreservesInvariant

13 |[⊢ PreservesInvariant _ _ (put _)] ⇒
14 apply put_PreservesInvariant

15 |[⊢ PreservesInvariant _ _ (update _)] ⇒
16 apply update_PreservesInvariant

17 |[⊢ PreservesInvariant _ _] ⇒ typeclasses eauto

18 end.

Listing 7. preserves_step tactic

This tactic allows quick stepping through monadic ex-
pressions in the goal by introducing necessary intermediate
variables, hypotheses, and more granular sub-goals. While
the handling of monadic primitives is hardcoded into the
tactic, it will attempt to resolve PreservesInvariant goals
for user-defined functions using the Coq typeclass resolu-
tion mechanism. Available PreservesInvariant instances
for additional functions will be applied, if possible, via the
typeclasses eauto default clause. There are additional tac-
tics that allow performing these steps repeatedly, destructing
match and let expressions along the way.

Additionally, there is a set of lemmas for invertingmonadic
operations in the hypotheses, along with corresponding au-
tomation. A snippet of these (a lemma and an Ltac script
fragment) is shown in Listing 8.

1 Lemma bind_memM_inv

2 {T T': Type}

3 {m: memM T'}

4 {c: T' → memM T}

5 {x: T}

6 {s s': mem_state}:

7 (bind m c) s = (s', inr x) →
8 ∃ s'' y, m s = (s'', inr y) ∧ c y s'' = (s', inr x).

9
10 Ltac state_inv_step := match goal with

11 (* memM bind: *)

12 |[H: (bind _ (𝜆 x ⇒ _)) ?s = (_ ,inr _) ⊢ _] ⇒
13 let H1 := fresh H in

14 let H2 := fresh H in

15 let x' := fresh x in

16 let s' := fresh s in

17 apply bind_memM_inv in H;

18 destruct H as [s' [x' [H1 H2]]];

19 (* ... *)

20 end.

Listing 8. Sample definitions for inverting monadic opera-
tions

The resulting automation has proven to be handy, un-
winding all state and error monad-related mechanics and
leaving the user to prove the actual state modifications and
invariants for their results.
Although we defined our monadic reasoning lemmas

and automation for the memM monad, mem_state state, and
PreservesInvariant predicate, the underlying framework
could be easily generalised for all instances of the errS

monad and arbitrary state types and invariant predicates.
We plan to eventually refactor and release this as a general-
purpose library for reasoning about monadic programs with
error handling and state.
Because the memory model interface was defined by the

OCaml implementation of Cerberus, some data structures
passed to the memory model could not be proven to be
consistent, even though the underlying OCaml code ensures
they are correct by construction. For example, when dealing

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

with a struct type, the list of field values needs to correspond
exactly to the list of field types in the struct definition. In
a pure Coq implementation, this would have been enforced
by dependent types. To avoid adding additional assumptions
or axioms to our proofs, we opted to add assertions to the
memory model implementation, which allowed us to derive
the necessary guarantees. These assertions could be later
removed for performance, if required.
The Coq implementation of the memory model is rela-

tively compact: the core logic consists of 3,481 lines of code
(LoC) plus 4,018 LoC of auxiliary definitions (helper func-
tions and data structures). The proofs of the invariant amount
to 9,546 LoC.

7 Discussion of the Results
The relation between memory states described by clean and
dirty invariants5, which we have proven (as defined in Sec-
tion 5), is shown in Figure 2.

Initially, the empty memory state is clean. Any subsequent
calls to free() transition it to dirty, where it remains until the
revocation pass is executed via revoke().

clean

dirty

free()free()revoke()

Figure 2. State transitions between clean and dirty states.

In the CHERI capability machine, memory access is gov-
erned by valid capabilities, which collectively define the
footprint of memory accessible to a program. Initially, in an
empty memory state, neither use-after-return (UAR) nor use-
after-free (UAF) issues are possible, as no live capabilities
exist.
Subsequent calls to free result in freed memory blocks

being placed into a quarantine state. These blocks remain ac-
cessible under the dirty memory invariant (as defined in Sec-
tion 5), potentially allowing UAF. However, new allocations
are not permitted to overlap with either live or quarantined
regions, as enforced by the invariants, thereby ensuring that
UAR is impossible in this stage.

A revocation pass transitions memory back to a clean state,
as specified by the clean memory invariant (Section 5). This
process invalidates all capabilities pointing to quarantined
regions while preserving those referencing live memory,
ensuring that neither UAF nor UAR can occur in the clean
state.
5The base invariant is part of both clean and dirty invariants and always
holds.

In summary, the dirty and clean memory invariants guar-
antee the absence of UAR across all memory states and the
prevention of UAF in the clean state.
To recap, our proposed memory model builds upon the

previously proposed in [42] CHERI C memory model but
replaces the use of PNVI-ae-udi with PNVI-CHERI. The prin-
cipal innovation lies in achieving greater abstraction sim-
plification while preserving compatibility with the CHERI
C semantics. While not formally proven, we claim sound-
ness and completeness properties of the proposed memory
model with respect to the original PNVI-ae-udi-based CHERI
C memory model from [42], defined as follows:

Soundness. The proposed memory model retains com-
patibility with the behaviours permitted by PNVI-ae-udi, en-
suring no additional behaviours are introduced. The sole
deviation is the introduction of new undefined behaviour
concerning the handling of zero-length capability bounds,
as elaborated in Section 2.

Completeness. Compiler optimisations predicated on
pointer provenance remain valid under the new model.
Although PNVI-CHERI and PNVI-ae-udi adopt distinct ap-
proaches to pointer provenance tracking, both ultimately
address the same fundamental question: "What is the prove-
nance of a given pointer?" As the answers provided by the
two models align, the observable behaviours of CHERI C
programs remain consistent across both semantics.

8 Related Work
Our work builds upon the CHERI C semantics and the
capability-enabled memory model presented in [42], which
itself builds on the foundational Cerberus ISO C mechanised
semantics and the provenance-aware memory model [27].
Our contributions, summarised in Section 1, extend this

existing work. Specifically, we modify the CHERI C memory
model to introduce the PNVI-CHERI pointer provenance
tracking scheme and a new pointer revocation mechanism.
Additionally, the formulation of invariants and proofs of
their correctness for our enhancedmemorymodel represents
completely new work, addressing the concept of temporal
safety in CHERI C for the first time.
Our implementation if CHERI C memory model is based

on [42], but it uses PNVI-CHERI instead of PNVI-ae-udi,
which allowed for significant simplifications to the inter-
nal logic and data structures. Some examples of simplifi-
cation are: pointer values and bytes in memory no longer
carry provenance information; allocations do not carry an
exposure flag; and memory bytes do not keep track of an
optional integer offset. All provenance-related checks and re-
lated logic were re-implemented using capabilities’ fields in-
stead of provenance meta-information, and the redundancies
between capability bounds and allocation footprint checks

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

were eliminated. This made our model simpler both concep-
tually and implementation-wise.

We are aware of only two other formal verification projects
related to CHERI C: a bounded model checker [8], and a
CompCert-style CHERI C memory model [31].

There are several other memory models proposed for ISO
C. They are not easy to compare directly as their design is
impacted by how the rest of C semantics is formalised, but
they could be roughly classified by the approach they have
taken to represent C objects in memory.

Memorymodels influenced by CompCert’s memorymodel
[25] use two-level block/offset addressing to index byte val-
ues. The 𝐶𝐻2𝑂 memory model [22] uses abstract trees, mir-
roring the structure of C data types, to store memory values,
with paths through these trees used to address them. These
models, sometimes referred to as logical memory models, are
convenient for use from the perspective of C semantics, but
they make it challenging to model pointer-to-integer casts,
pointer bit manipulation, and memory exhaustion. These
capabilities are necessary for reasoning about low-level com-
piler optimisations and linking them with underlying hard-
ware formalisations to achieve the long-sought but elusive
goal of “end-to-end” verification. By contrast, concrete mem-
ory models represent memory as an array of bytes, with each
byte addressable by an integer. This simplifies the modelling
of pointer-to-integer casts, pointer bit manipulation, and
memory exhaustion. There is ongoing work [4–7, 21, 24]
aiming to reconcile logical and concrete memory models.
Some of the aforementioned memory models [24, 29] imple-
ment forms of pointer provenance and attempt to address
temporal safety.

Our monadic reasoning framework was inspired by Inter-
action Trees (ITrees) [41], although it is significantly simpler,
focusing exclusively on state and error monads. While ITrees
provide a rich framework for reasoning about potentially
non-terminating programs, non-determinism, and coinduc-
tive computations, our framework is designed for simplicity
and ease of use, tailored specifically to deterministic pro-
grams with state and error handling.

9 Future Work
We proved the clean invariant but could also prove the dirty
invariant, which should be relatively simple. Once both are
proven, we could trivially demonstrate that the former im-
plies the latter.
Using our model definition and reasoning framework, in

the future we could prove additional model properties such
as pointer monotonicity, which states that memory model
operations, aside from new memory allocations, should not
expand the security perimeter. The security perimeter is de-
fined as the union of all regions of memory accessible via
(transitively) available pointers and their permissions. Non-
expansion of the security perimeter means that the acces-
sible area of memory can only shrink, and the permissions

for existing regions can only become more restrictive (e.g.,
changing from read-write to read-only, but not vice versa).

The CHERI C memory model, along with the base version
of Cerberus C semantics on which it relies, does not model
the C/C++11 concurrency memory model. Several existing
efforts [23, 30] have sought to add concurrency to Cerberus,
which could be leveraged in the future to implement a con-
current version of CHERI C semantics. It should be noted,
however, that our PNVI-CHERI provenance tracking scheme
is independent of concurrency semantics and should apply
equally to concurrent implementations.
While the abstract semantics presented in this work do

not differentiate between heap and stack temporal safety,
to date all implementations of temporal safety mechanisms
atop CHERI have done so for performance, as the stack is
designed to reuse addresses promptly in ways that the heap
is not. Indeed, several of the real-world implementations of
CHERI revocation, and, in particular, the CHERIvoke family
on which we model our semantics, offer exclusively heap
temporal safety, leaving stack temporal safety out of scope.
Instead, the semantics presented here assume that it is possi-
ble to act on all of memory atomically. As such, the prompt
reuse of address space in stack allocations is not a concern,
and the practical concerns around concurrency and perfor-
mance that have driven implementation work can be ignored.
There have been efforts to extend the architecture in various
ways to better facilitate stack temporal safety [13, 14, 18, 34],
CHERIoT has mechanisms more narrowly targeting inter-
compartment stack temporal safety [3, §5.2], and CheriOS
built a temporally-safe stack C ABI atop its heap temporal
safety mechanism [10, §4.1]. However, these require more
machinery and are not without their own practical caveats.
A completely satisfactory way of capturing our semantics’
indifference to heap- vs. stack-allocated objects remains elu-
sive. That said, stack objects’ lifetimes are often simpler than
heap objects’, with compiler optimization techniques such as
escape analysis can often ensure that no references to a stack
object outlive the object itself [10, § C]; one could imagine
moving (possibly-)escaping objects into the heap.
Temporal safety as treated in this work is a very partic-

ular aspect of memory safety at large, ensuring properties
of valid pointers within program memory. Notably, these
properties are orthogonal to the flow of pointers within the
program. Meanwhile, the C programming language allows
for allocations to hold “indeterminate” values until initial-
ization. In practice, these “indeterminate” values are often
old state from the program, previously held in the object(s)
whose memory has been reused, but in principle arbitrary
values conjured “out of the air” would still be semantically
correct. A risk to CHERI C safety is that these indeterminate
values could be valid capabilities to live objects in the sys-
tem, resulting in unintentional and covert capability flow
between objects in the program. Such flows will not violate

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

the properties proven in this work. In practice, some im-
plementations of allocators, for added security at the cost
of performance, enforce zero-initialisation of all allocations
before making them available to the program. In CHERI C,
clearing the tags is sufficient, and would also be a side effect
of zero-initialisation. The added benefit of zero-initialisation,
compared to just tag clearing, is that it also prevents infor-
mation leaks via non-capabilities, as opposed to authority
leaks via capabilities. Both initialisation behaviours can be
formally modelled in our memory model, allowing for a
stronger memory invariant to be stated and proven.

10 Conclusions
We introduce a new CHERI-specific pointer provenance
tracking scheme: PNVI-CHERI. It is defined in the spirit
of existing PNVI-plan and PNVI-ae-udi schemes, re-using
the provenance tracking terminology and framework of the
working draft ISO Technical Specification [16], and should
provide a logical extension of this specification for CHERI C.
The resulting PNVI-CHERI provides compiler writers with a
framework to reason about pointer aliasing and confirm the
correctness of potential optimisations.

The resulting PNVI-CHERI -based CHERI Cmemorymodel
is significantly simpler and easier to understand than the
PNVI-ae-udi-based one from [42], which could help facilitate
its wider adoption not only by the research community but
also by practitioners developing tools for CHERI C. Themem-
ory model formalisation in Coq enables other researchers to
formally prove properties of the CHERI memory model.

We analysed several existing low-level CHERI revocation
mechanisms and modelled their impact on CHERI C seman-
tics. Moreover, we have formally defined and proved security
properties of the memory model related to temporal safety.

Acknowledgements
This work was supported by the UK Industrial Strategy
Challenge Fund (ISCF) under the Digital Security by De-
sign (DSbD) Programme, to deliver a DSbDtech enabled
digital platform (grant 105694). This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 789108, ERC AdG ELVER).
This work was funded in part by UK Research and Inno-
vation (UKRI) under the UK government’s Horizon Europe
funding guarantee for ERC-AdG-2022, EP/Y035976/1 SAFER.

References
[1] Ricardo Almeida et al. 2024. coq-cheri-capabilities library. GitHub

repository. https://github.com/rems-project/coq-cheri-capabilities
Accessed 2024-09-13.

[2] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel
Filardo, Kunyan Liu, Robert Norton-Wright, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Rethinking secu-
rity for low-cost embedded systems. Technical Report MSR-TR-2023-6.

Microsoft. https://www.microsoft.com/en-us/research/publication/
cheriot-rethinking-security-for-low-cost-embedded-systems/

[3] Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao,
Robert N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete
Memory Safety for Embedded Devices. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium onMicroarchitecture (Toronto,
ON, Canada) (MICRO ’23). Association for Computing Machinery, New
York, NY, USA, 641–653. https://doi.org/10.1145/3613424.3614266

[4] Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve
Zdancewic. 2024. A Two-Phase Infinite/Finite Low-Level Memory
Model: Reconciling Integer–Pointer Casts, Finite Space, and undef at
the LLVM IR Level of Abstraction. Proc. ACM Program. Lang. 8, ICFP,
Article 263 (aug 2024), 29 pages. https://doi.org/10.1145/3674652

[5] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2014. A Precise and
Abstract Memory Model for C Using Symbolic Values. In Programming
Languages and Systems - 12th Asian Symposium, APLAS 2014, Singapore,
November 17-19, 2014, Proceedings (Lecture Notes in Computer Science,
Vol. 8858), Jacques Garrigue (Ed.). Springer, 449–468. https://doi.org/
10.1007/978-3-319-12736-1_24

[6] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2015. A Concrete
Memory Model for CompCert. In Interactive Theorem Proving - 6th
International Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings (Lecture Notes in Computer Science, Vol. 9236), Christian
Urban and Xingyuan Zhang (Eds.). Springer, 67–83. https://doi.org/
10.1007/978-3-319-22102-1_5

[7] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2017. CompCertS:
A Memory-Aware Verified C Compiler Using Pointer as Integer Se-
mantics. In Interactive Theorem Proving - 8th International Conference,
ITP 2017, Brasília, Brazil, September 26-29, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10499), Mauricio Ayala-Rincón and
César A. Muñoz (Eds.). Springer, 81–97. https://doi.org/10.1007/978-
3-319-66107-0_6

[8] Franz Brauße, Fedor Shmarov, Rafael Menezes, Mikhail R. Gadelha,
Konstantin Korovin, Giles Reger, and Lucas C. Cordeiro. 2022. ESBMC-
CHERI: Towards Verification of C Programs for CHERI Platforms
with ESBMC. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY,
USA, 773–776. https://doi.org/10.1145/3533767.3543289

[9] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou,
Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazz-
inghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe, Peter
Sewell, Stacey Son, and Jonathan Woodruff. 2019. CheriABI: Enforc-
ing Valid Pointer Provenance and Minimizing Pointer Privilege in the
POSIX C Run-time Environment. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 379–393.
https://doi.org/10.1145/3297858.3304042

[10] Lawrence G. Esswood. 2021. CheriOS: designing an untrusted single-
address-space capability operating system utilising capability hardware
and aminimal hypervisor. Ph. D. Dissertation. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-961

[11] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Jes-
sica Clarke, Peter Rugg, Brooks Davis, Mark Johnston, Robert Nor-
ton, David Chisnall, Simon W. Moore, Peter G. Neumann, and Robert
N. M. Watson. 2024. Cornucopia Reloaded: Load Barriers for CHERI
Heap Temporal Safety. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24). As-
sociation for Computing Machinery, New York, NY, USA, 251–268.

https://github.com/rems-project/coq-cheri-capabilities
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3674652
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1145/3533767.3543289
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.48456/tr-961

CPP ’25, January 20–21, 2025, Denver, CO, USA V. Zaliva, K. Memarian, B. Campbell, R. Almeida, N. Filardo, I. Stark, and P. Sewell

https://doi.org/10.1145/3620665.3640416
[12] Wesley Nathaniel Filardo, Brett F. Gutstein, Jonathan Woodruff,

Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia,
Edward Tomasz Napierala, Alexander Richardson, John Baldwin,
David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou, A.
Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W. Moore,
Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Tem-
poral Safety for CHERI Heaps. In 2020 IEEE Symposium on Security
and Privacy (SP). 608–625. https://doi.org/10.1109/SP40000.2020.00098

[13] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin
Timany, Alix Trieu, Sander Huyghebaert, Dominique Devriese, and
Lars Birkedal. 2021. Efficient and provable local capability revocation
using uninitialized capabilities. Proc. ACM Program. Lang. 5, POPL,
Article 6 (jan 2021), 30 pages. https://doi.org/10.1145/3434287

[14] Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le temps des
cerises: efficient temporal stack safety on capability machines using
directed capabilities. Proc. ACM Program. Lang. 6, OOPSLA1, Article
74 (April 2022), 30 pages. https://doi.org/10.1145/3527318

[15] Richard Grisenthwaite, Graeme Barnes, Robert N.M.Watson, SimonW.
Moore, Peter Sewell, and Jonathan Woodruff. 2023. The Arm Morello
Evaluation Platform - Validating CHERI-Based Security in a High-
Performance System. IEEE Micro 43, 3 (2023), 50–57. https://doi.org/
10.1109/MM.2023.3264676

[16] Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor BF Gomes, and
Martin Uecker. 2022. A Provenance-aware Memory Object Model for
C. Working draft ISO Technical Specification TS6010.

[17] Ben Hawkes. 2019. 0day In the Wild. (2019). Project Zero team
blog, Google. https://googleprojectzero.blogspot.com/p/0day.html. Ac-
cessed 2023-04-19.

[18] Sander Huyghebaert, Thomas Van Strydonck, Steven Keuchel,
and Dominique Devriese. 2020. Uninitialized Capabilities.
arXiv:2006.01608 [cs.PL] https://arxiv.org/abs/2006.01608

[19] International Organization for Standardization. 2018. Programming
Languages – C. International Standard 9899:2018. ISO/IEC, Geneva,
Switzerland.

[20] Nicolas Joly, Saif ElSherei, and Saar Amar. 2020. Security Anal-
ysis of CHERI ISA. Technical Report. Microsoft Security Re-
sponse Center. https://github.com/microsoft/MSRC-Security-
Research/blob/master/papers/2020/Security%20analysis%20of%
20CHERI%20ISA.pdf

[21] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, and Viktor Vafeiadis. 2015. A formal C memory
model supporting integer-pointer casts. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, Portland, OR, USA, June 15-17, 2015, David Grove and
Stephen M. Blackburn (Eds.). ACM, 326–335. https://doi.org/10.1145/
2737924.2738005

[22] Robbert Jan Krebbers. 2015. The C Standard Formalized in Coq. Ph. D.
Dissertation. Radboud University, Nijmegen, Netherlands.

[23] Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-
Pharabod, and Peter Sewell. 2019. Cerberus-BMC: A Principled Refer-
ence Semantics and Exploration Tool for Concurrent and Sequential
C. In Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I (Lec-
ture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran
(Eds.). Springer, 387–397. https://doi.org/10.1007/978-3-030-25540-
4_22

[24] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr,
and Nuno P. Lopes. 2018. Reconciling high-level optimizations and
low-level code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA (2018),
125:1–125:28. https://doi.org/10.1145/3276495

[25] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.
2012. The CompCert Memory Model, Version 2. Research report RR-7987.

INRIA. http://hal.inria.fr/hal-00703441
[26] Gregory Malecha et al. 2012. ExtLib Coq library. GitHub repository.

https://github.com/coq-ext-lib/coq-ext-lib Accessed: 2024-09-11.
[27] Kayvan Memarian. 2023. The Cerberus C semantics. Technical Report

UCAM-CL-TR-981. University of Cambridge, Computer Laboratory.
https://doi.org/10.48456/tr-981

[28] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell,
Alexander Richardson, Robert N. M. Watson, and Peter Sewell. 2019.
Exploring C Semantics and Pointer Provenance. Proc. ACM Program.
Lang. 3, POPL, Article 67 (January 2019), 32 pages. https://doi.org/10.
1145/3290380

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2010. CETS: compiler enforced temporal safety for C. In
Proceedings of the 2010 International Symposium on Memory Manage-
ment (Toronto, Ontario, Canada) (ISMM ’10). Association for Comput-
ing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/
1806651.1806657

[30] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. 2016. An op-
erational semantics for C/C++11 concurrency. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (Amsterdam, Netherlands)
(OOPSLA 2016). Association for Computing Machinery, New York, NY,
USA, 111–128. https://doi.org/10.1145/2983990.2983997

[31] Seung Hoon Park, Rekha R. Pai, and Tom Melham. 2023. A Formal
CHERI-C Semantics for Verification. In Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference,
TACAS 2023, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Pro-
ceedings, Part I (Lecture Notes in Computer Science, Vol. 13993), Sriram
Sankaranarayanan and Natasha Sharygina (Eds.). Springer, 549–568.
https://doi.org/10.1007/978-3-031-30823-9_28

[32] Alex Rebert and Christoph Kern. 2024. Secure by Design: Google’s
Perspective on Memory Safety. Technical Report. Google Security
Engineering. https://research.google/pubs/secure-by-design-googles-
perspective-on-memory-safety/

[33] CWE Team. 2023. CWE Top 25 Most Dangerous Software Weaknesses.
https://cwe.mitre.org/top25/index.html Access: 2024-09-14.

[34] Stelios Tsampas, Dominique Devriese, and Frank Piessens. 2019. Tem-
poral Safety for Stack Allocated Memory on Capability Machines.
In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF).
https://doi.org/10.1109/CSF.2019.00024

[35] Robert N. M. Watson, Ben Laurie, and Alex Richardson. 2021.
Assessing the Viability of an Open-Source CHERI Desktop
Software Ecosystem. Technical Report. Capabilities Limited.
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210917-
capltd-cheri-desktop-report-version1-FINAL.pdf

[36] Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G.
Neumann. 2019. An Introduction to CHERI. Technical Report UCAM-
CL-TR-941. University of Cambridge, Computer Laboratory. https:
//doi.org/10.48456/tr-941

[37] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Franz A. Fuchs, Richard Grisenthwaite,
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexan-
der Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan
Xia. 2023. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 9). Technical Report UCAM-
CL-TR-987. University of Cambridge, Computer Laboratory. https:
//doi.org/10.48456/tr-987

[38] WG14. 2004. Defect Report 260. http://www.open-std.org/jtc1/sc22/
wg14/www/docs/dr_260.htm.

https://doi.org/10.1145/3620665.3640416
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3527318
https://doi.org/10.1109/MM.2023.3264676
https://doi.org/10.1109/MM.2023.3264676
https://googleprojectzero.blogspot.com/p/0day.html
https://arxiv.org/abs/2006.01608
https://arxiv.org/abs/2006.01608
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1145/3276495
http://hal.inria.fr/hal-00703441
https://github.com/coq-ext-lib/coq-ext-lib
https://doi.org/10.48456/tr-981
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3290380
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1007/978-3-031-30823-9_28
https://research.google/pubs/secure-by-design-googles-perspective-on-memory-safety/
https://research.google/pubs/secure-by-design-googles-perspective-on-memory-safety/
https://cwe.mitre.org/top25/index.html
https://doi.org/10.1109/CSF.2019.00024
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://doi.org/10.48456/tr-941
https://doi.org/10.48456/tr-941
https://doi.org/10.48456/tr-987
https://doi.org/10.48456/tr-987
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm

A CHERI C Memory Model for Verified Temporal Safety CPP ’25, January 20–21, 2025, Denver, CO, USA

[39] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert M. Norton, and Michael Roe. 2014. The CHERI ca-
pability model: Revisiting RISC in an age of risk. In ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014, Min-
neapolis, MN, USA, June 14-18, 2014. IEEE Computer Society, 457–468.
https://doi.org/10.1109/ISCA.2014.6853201

[40] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Fi-
lardo, Michael Roe, Alexander Richardson, Peter Rugg, Peter G. Neu-
mann, Simon W. Moore, Robert N. M. Watson, and Timothy M. Jones.
2019. CHERIvoke: Characterising Pointer Revocation using CHERI
Capabilities for TemporalMemory Safety. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture (Colum-
bus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 545–557. https://doi.org/10.1145/3352460.3358288

[41] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019. Inter-
action trees: representing recursive and impure programs in Coq.
Proc. ACM Program. Lang. 4, POPL, Article 51 (dec 2019), 32 pages.
https://doi.org/10.1145/3371119

[42] Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke,
Brooks Davis, Alexander Richardson, David Chisnall, Brian Camp-
bell, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2024. For-
mal Mechanised Semantics of CHERI C: Capabilities, Undefined Be-
haviour, and Provenance. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). As-
sociation for Computing Machinery, New York, NY, USA, 181–196.
https://doi.org/10.1145/3617232.3624859

Received 2024-09-17; accepted 2024-11-19

https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3617232.3624859

	Abstract
	1 Introduction
	2 Revocation
	3 Provenance, Capabilities, and Revocation
	4 CHERI C Memory Model
	5 Memory Invariants
	5.1 Base
	5.2 The ``Dirty'' Invariant (Between Sweeps)
	5.3 The ``Clean'' Invariant (Post-Sweep)

	6 Proving Invariants
	7 Discussion of the Results
	8 Related Work
	9 Future Work
	10 Conclusions
	References

