
Formal verification of
Coreboot SMI handler

Vadim Zaliva, Digamma.ai

2023 TWISTED Quarterly Meeting @UCSC

Introduction

1. Digamma.ai: 18 years in business. Boutique consulting firm in Silicon Valley with
engineering offices in Ukraine. ~100 employees, customers from small startups
to Fortune 100 companies.

2. Three years ago identified Formal Verification as an interesting direction for
future business opportunities. Decided to position ourselves as an early
industry adopter.

3. Focus on small and medium enterprises. We are not specifically pursuing
government contracts.

4. Initial focus on verifying existing software instead of rewriting and replacing it
with verified code.

5. Built and trained a group of verification engineers.

System Management Mode

● SMM is a special-purpose operating mode provided for
handling system-wide functions and intended for use only
by system firmware.

● Can be invoked through System Management Interrupt.
● Is executed in distinct and isolated processor

environment that operates transparently to the OS or
user applications.

● Has full access to all physical memory, including BIOS
region on the SPI flash.

● Is a target for malicious rootkits. SMM malware can do
almost everything!

● It was shown that SMM rootkits are not only theoretically
but also practically possible.

SMM memory corruption CVEs

Coreboot SMI handler verification project

● We are going to verify that the SMI handler will never write to the code area in

System Management RAM.

● This will prevent at least 20 known CVEs.

● Verified Software Toolchain is used for formal verification of the C code.

● Coreboot is a project to develop open-source boot firmware.

● Coreboot is used on ChromeOS devices.

● Coreboot with Gemini Lake chipset & Google Octopus mainboard are used on

more than 25 Chromebook models including ASUS Chromebook CX1101,

Lenovo Ideapad 3, and Samsung Chromebook 4.

Porting Coreboot SMI handler to VST

● Coreboot: 11,802 files/1,769,995 LoC
● Gemini Lake SMI handler: 367 files/57,821 LoC
● Binary size of compiled SMM code: 622 Kb
● 168 modifications to the source code were introduced for compatibility with

Compcert & VST.
● We have ensured that code with and without our changes compiles to exactly the

same binary.

 #ifdef __VERIFICATION_CHANGE__
 write32((void *)((uint8_t *)spibar + SPIBAR_DLOCK), dlock);
 #else
 write32(spibar + SPIBAR_DLOCK, dlock);
 #endif

Example of integer-to-pointer casts

const uintptr_t pci_mmconf = (uintptr_t)CONFIG_ECAM_MMCONF_BASE_ADDRESS ;

static inline volatile union pci_bank *pci_map_bus(pci_devfn_t dev) {
 return (void *)&((u8 *)ptr_of_int(pci_mmconf))[PCI_DEVFN_OFFSET(dev)];
}

void pci_s_write_config8(pci_devfn_t dev, uint16_t reg, uint8_t value) {
 pci_map_bus(dev)->reg8[reg] = value;
}

● Integer to pointer casts frequently occur in coreboot code but are not supported by VST

● Enhanced Configuration Access Mechanism (ECAM) can be used for PCIe configuration reads

and writes.

● pci_s_write_config8() function shown above is from Coreboot.

VST concrete addresses reasoning extension

● VST uses abstract memory model, while we need to prove properties about concrete addresses.

● SMI handler code uses type casts between pointers and integers which are not supported by VST.

● int_of_ptr() and ptr_of_int() functions were introduced and their specifications were axiomatized.

● val_has_address p a says that pointer value p corresponds to the address a in concrete memory model.

Definition ptr_of_int_spec : ident * funspec :=
 DECLARE _ptr_of_int
 WITH p : val, a : int
 PRE [tuint]
 PROP (val_has_address p a)
 PARAMS (Vint a)
 SEP ()
 POST [tptr tvoid]
 PROP ()
 RETURN (p)
 SEP ().

Definition int_of_ptr_spec : ident * funspec :=
 DECLARE _int_of_ptr
 WITH p : val
 PRE [tptr tvoid]
 PROP ()
 PARAMS (p)
 SEP ()
 POST [tuint] EX (a : int),
 PROP (val_has_address p a)
 RETURN (Vint a)
 SEP ().

uintptr_t int_of_ptr(void *); void * ptr_of_int(uintptr_t);

Integrating concrete memory model into VST
Definition _pci_mmconf_OBJ : ident := $"pci_mmconf_OBJ ".

Definition pci_mmconf_size : Z := 1048576.

Definition pci_mmconf_type : type :=

 tarray tuchar pci_mmconf_size.

● In order to apply ptr_of_int_spec in VST proof we need to satisfy its precondition: provide an

address and a pointer, and prove that this pointer is related to this address.

● CONFIG_ECAM_MMCONF_BASE_ADDRESS is not related to a pointer to valid C object, it is the base

address of PCIe memory-mapped configuration area.

● We create a “fake” VST object for PCIe memory-mapped configuration area and add an axiom about its

relation to the base address.

● We will have several such assumptions for pointer-address relations in the SMI handler specification.

From these we can deduce that memory areas used for write don’t overlap with SMRAM.

Parameter has_address : block -> offset -> int -> Prop.
Axiom pci_mmconf_address_rel : ∀ (gv : globals) (b : block) (p : ptrofs),
 gv _pci_mmconf_OBJ = Vptr b p ->
 has_address b p pci_mmconf_addr.

Definition Vprog : varspecs.

 assert (vs : varspecs) by mk_varspecs prog.

 exact ((_pci_mmconf_OBJ, pci_mmconf_type) :: vs).

Defined.

VST specification for pci_s_write_config8

Definition pci_s_write_config8_spec : ident * funspec :=

 DECLARE _pci_s_write_config8

 WITH gv : globals, lb : list byte, dev : int, reg : int, value : byte

 PRE [tuint, tushort, tuchar]

 PROP (Int.unsigned dev < pci_mmconf_size - pci_mmconf_dev_size;

 Int.unsigned reg < pci_mmconf_dev_size)

 PARAMS (Vint dev; Vint reg; Vubyte value)

 GLOBALS (gv)

 SEP (data_at Tsh tuint (Vint pci_mmconf_addr) (gv _pci_mmconf);

 data_at Tsh pci_mmconf_type (map Vubyte lb) (gv _pci_mmconf_OBJ))
 POST [tvoid]

 PROP ()

 RETURN ()

 SEP (data_at Tsh tuint (Vint pci_mmconf_addr) (gv _pci_mmconf);

 data_at Tsh pci_mmconf_type (map Vubyte (pci_s_write_config8 lb dev reg value)) (gv _pci_mmconf_OBJ)).

Axiom pci_mmconf_address_rel :

 ∀ (gv : globals) (b : block) (p : ptrofs),

 gv _pci_mmconf_OBJ = Vptr b p ->

 has_address b p pci_mmconf_addr.

Definition pci_mmconf_type : type :=

 tarray tuchar pci_mmconf_size.

SMM region overlap runtime checking

As mentioned in the coreboot documentation [1]:

“In order to not leak SMM internals or accidentally
overwrite parts of SMM, ring0 provided data (pointers,
offsets, sizes, …) must be checked before using them
in SMM.

There exist two methods to verify data:

/* Returns true if the region overlaps with the SMM */

bool smm_region_overlaps_handler(struct region *r);

static inline bool smm_points_to_smram(const void *ptr, const size_t len);

/* Returns true if the region overlaps with the SMM */

static inline bool region_overlap(const struct region *r1,
const struct region *r2) {
 return (region_end(r1) > region_offset(r2)) &&
 (region_offset(r1) < region_end(r2));
}

struct region r1 = {SIZE_MAX - 10, 20};
struct region r2 = {SIZE_MAX - 20, 15};

 r1r2

SIZE_MAX

[1] https://doc.coreboot.org/security/smm.html

Example of incorrect behaviour:

https://doc.coreboot.org/security/smm.html

static inline bool region_overlap(const struct region *r1,
 const struct region *r2) {
 return (region_end(r1) > region_offset(r2)) &&

 (region_offset(r1) < region_end(r2));

}

static inline bool region_overlap_correct(const struct region *r1,
 const struct region *r2) {
 if (region_sz(r1) == 0 || region_sz(r2) == 0)
 return false;
 size_t size1 = min(region_sz(r1) - 1, SIZE_MAX - region_offset(r1));
 size_t size2 = min(region_sz(r2) - 1, SIZE_MAX - region_offset(r2));
 return (region_offset(r1) + size1 ≥ region_offset(r2)) &&
 (region_offset(r1) ≤ size2 + region_offset(r2));
}

Definition in_region (a : Z) (r : region Z) : Prop := a ≥ region_offset r ∧ a < region_end_Z r .
Definition region_overlap_rel_Z (r1 r2 : region Z) : Prop := ∃ (a : Z), in_region a r1 ∧ in_region a r2 .
Definition region_overlap_rel (r1 r2 : region int) : Prop := region_overlap_rel_Z (region_Z_of_int r1) (region_Z_of_int r2).

Definition region_overlap (r1 r2 : region int) : bool
:=
 (Int.ltu (region_offset r2)
 (region_end_int r1)) &&
 (Int.ltu (region_offset r1)

 (region_end_int r2)).

Definition region_overlap_correct (r1 r2 : region int) : bool :=
 if Int.eq (region_sz r1) Int.zero || Int.eq (region_sz r2) Int.zero then false
 else
 let size1 := int_min (Int.sub (region_sz r1) Int.one)
 (Int.sub (Int.repr Int.max_unsigned) (region_offset r1))
in
 let size2 := int_min (Int.sub (region_sz r2) Int.one)
 (Int.sub (Int.repr Int.max_unsigned) (region_offset r2))
in
 (negb (Int.ltu (Int.add (region_offset r1) size1) (region_offset r2))) &&
 (negb (Int.ltu (Int.add (region_offset r2) size2) (region_offset r1))).

Abstract specification:

Functional specification for the original: Functional specification for corrected function:

Corrected region overlap check
Original C code Corrected C code

Lemma region_rel_func (r1 r2 : region int) : region_overlap_rel r1 r2 ↔ region_overlap_correct r1 r2 = true.

Definition region_overlap_correct_spec : ident * funspec :=
 DECLARE _region_overlap_correct
 WITH sh: share, p1 : val, p2 : val,
 r1 : region int, r2 : region int
 PRE [tptr tregion , tptr tregion]
 PROP (readable_share sh)
 PARAMS (p1; p2)
 SEP (region_at sh r1 p1 ; region_at sh r2 p2)
 POST [tbool]
 PROP ()
 RETURN (Val.of_bool (region_overlap_correct r1 r2))
 SEP (region_at sh r1 p1 ; region_at sh r2 p2).

Definition region_overlap_spec : ident * funspec :=
 DECLARE _region_overlap
 WITH sh: share, p1 : val, p2 : val,
 r1 : region int, r2 : region int
 PRE [tptr tregion , tptr tregion]
 PROP (readable_share sh)
 PARAMS (p1; p2)
 SEP (region_at sh r1 p1 ; region_at sh r2 p2)
 POST [tbool]
 PROP ()
 RETURN (Val.of_bool (region_overlap r1 r2))
 SEP (region_at sh r1 p1 ; region_at sh r2 p2).

VST specifications

For corrected function functional specification implements abstract specification:

For old (incorrect) function exists a false negative:

Lemma false_negative_exists : ∃ (r1 r2 : region int),
 (region_overlap r1 r2 = false) ∧ (region_overlap_correct r1 r2 = true).

VST specifications for region_overlap

Use of region_overlap in brightness function

static void mainboard_smi_brightness_down(void) {
 uint32_t reg32 = pci_read_config32(PCI_DEV(1, 0, 0), PCI_BASE_ADDRESS_2) &
~0xf;
 u8 *bar = (void *)(uintptr_t)reg32;

 /* Validate pointer before using it */
 if (!bar || smm_points_to_smram(bar, LVTMA_BL_MOD_LEVEL + sizeof(uint8_t)))
 return;

 *(bar + LVTMA_BL_MOD_LEVEL) &= 0xf0;
 if (*(bar + LVTMA_BL_MOD_LEVEL) > 0x10)
 *(bar + LVTMA_BL_MOD_LEVEL) -= 0x10;
}

#define LVTMA_BL_MOD_LEVEL 0x7af9
#define SMM_BASE 0xa0000
#define SMM_DEFAULT_SIZE 0x10000

bool smm_region_overlaps_handler(const struct region *r) {
 const struct region r_smm = {SMM_BASE, SMM_DEFAULT_SIZE};
 return region_overlap(&r_smm, r);
}

Lemma brightness_correct : ∀ off : int,
 region_overlap r_smm (Int.and off (Int.not (Int.repr 0xf)), Int.add LVTMA_BL_MOD_LEVEL Int.one) =
 region_overlap_correct r_smm (Int.and off (Int.not (Int.repr 0xf)), Int.add LVTMA_BL_MOD_LEVEL Int.one).

Integer overflow bug does not manifest with arguments used in the brightness function:

Project status

● Finished feasibility study part of the project.
● Ported Coreboot SMM code for Gemini Lake chipset to VST and verified that

our changes produce the same binary as unchanged code.
● Developed an approach of dealing with pointer↔integer casts and concrete

memory addresses.
● Proved some sample functions to validate the approach.
● Discussed with some potential business partners to confirm product business

viability.
● Intend to proceed to the next stage: proving all of Coreboot SMI handler code

for Gemini Lake chipset.

RISC-V ISA

● RISC-V is new open source instruction set architecture that was originally

designed to support research and education, but aims to become a standard

open architecture for industry implementations.

● RISC-V modes of execution:
○ U-mode: for user applications

○ S-mode: for operating system

○ M-mode: for firmware

○ H-extension to support hypervisors

RISC-V firmware
● Supervisor Binary Interface (SBI) specification defines how firmware running in M-mode

and OS running in S-mode can interact with each other.

● OpenSBI is an open-source reference implementation of RISC-V run-time firmware

adhering to SBI specification.

● We conjecture that OpenSBI may be subject to similar privilege escalation vulnerabilities

as x86 SMI handlers.

Questions?

Contact: Vadim Zaliva <lord@digamma.ai>

Backup slides

Compcert compatibility changes to SMM code

● Arithmetic on void * pointers: added additional type casts.

● typeof() operator used in macros: specialized for particular types.

● Statements in expression extension used in macros: replaced with one-line

macros implementations or manually unfolded.

● __always_inline attribute: replaced with inline.

● Other unsupported attributes: replaced with supported alternatives or

removed.

● Too big values in enums: replaced with #defined constants.

● Struct empty initializers {}: replaced with {0}.

