Formal verification of
Coreboot SMI handler

Vadim Zaliva, Digamma.ai

Introduction

1.

Digamma.ai: 18 years in business. Boutique consulting firm in Silicon Valley with
engineering offices in Ukraine. ~100 employees, customers from small startups
to Fortune 100 companies.

Three years ago identified Formal Verification as an interesting direction for
future business opportunities. Decided to position ourselves as an early
industry adopter.

Focus on small and medium enterprises. We are not specifically pursuing
government contracts.

Initial focus on verifying existing software instead of rewriting and replacing it
with verified code.

Built and trained a group of verification engineers.

System Management Mode

Device Drivers
Device Drivers

Kernel

SMM is a special-purpose operating mode provided for
handling system-wide functions and intended for use only
by system firmware.

Can be invoked through System Management Interrupt.
Is executed in distinct and isolated processor
environment that operates transparently to the OS or
user applications.

Has full access to all physical memory, including BIOS
region on the SPI flash.

Is a target for malicious rootkits. SMM malware can do
almost everything!

It was shown that SMM rootkits are not only theoretically
but also practically possible.

SMM memory corruption CVEs

CVE-2021-33626
CVE-2021-33625
| CVE-2021-26943

CVE-2020-5388
| CVE-2006-6730

| CVE-2020-27339
| CVE-2020-12890
|CVE-2018-12182

CVE-2017-5721

CVE-2011-5174
And more...

A vulnerability exists in SMM (System Management Mode) branch that registers a SWSMI handler that does not sufficiently check or validate the allocated buffer
pointer(QWORD values for CommBuffer). This can be used by an attacker to corrupt data in SMRAM memory and even lead to arbitrary code execution.

An issue was discovered in Kernel 5.x in Insyde InsydeH20, affecting HddPassword. Software SMI services that use the Communicate() function of the
EFI_SMM_COMMUNICATION_PROTOCOL do not check whether the address of the buffer is valid, which allows use of SMRAM, MMIO, or OS kernel addresses.

The UX360CA BIOS through 303 on ASUS laptops allow an attacker (with the ring O privilege) to overwrite nearly arbitrary physical memory locations, including SMRAM,
and execute arbitrary code in the SMM (issue 3 of 3).

Dell Inspiron 15 7579 2-in-1 BIOS versions prior to 1.31.0 contain an Improper SMM communication buffer verification vulnerability. A local authenticated malicious user
may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM.

OpenBSD and NetBSD permit usermode code to kill the display server and write to the X.Org /dev/xf86 device, which allows local users with root privileges to reduce
securelevel by replacing the System Management Mode (SMM) handler via a write to an SMRAM address within /dev/xf86 (aka the video card memory-mapped I/O
range), and then launching the new handler via a System Management Interrupt (SMI), as demonstrated by a write to Programmed I/O port 0xB2.

In the kernel in Insyde InsydeH20 5.x, certain SMM drivers did not correctly validate the CommBuffer and CommBufferSize parameters, allowing callers to corrupt either
the firmware or the OS memory. The fixed versions for this issue in the AhciBusDxe, IdeBusDxe, NvmExpressDxe, SdHostDriverDxe, and SdMmcDeviceDxe drivers are
05.16.25, 05.26.25, 05.35.25, 05.43.25, and 05.51.25 (for Kernel 5.1 through 5.5).

Improper handling of pointers in the System Management Mode (SMM) handling code may allow for a privileged attacker with physical or administrative access to
potentially manipulate the AMD Generic Encapsulated Software Architecture (AGESA) to execute arbitrary code undetected by the operating system.

Insufficient memory write check in SMM service for EDK Il may allow an authenticated user to potentially enable escalation of privilege, information disclosure and/or
denial of service via local access.

Insufficient input validation in system firmware for Intel NUC7i3BNK, NUC7i3BNH, NUC7i5BNK, NUC7i5BNH, NUC7i7BNH versions BN0049 and below allows local
attackers to execute arbitrary code via manipulation of memory.

Buffer overflow in Intel Trusted Execution Technology (TXT) SINIT Authenticated Code Modules (ACM) in Intel Q67 Express, C202, C204, C206 Chipsets, and Mobile
Intel QM67, and QS67 Chipset before 2nd_gen_i5_i7_SINIT_51.BIN Express; Intel Q57, 3450 Chipsets and Mobile Intel QM57 and QS57 Express Chipset before
i5_i7_DUAL_SINIT_51.BIN and i7_QUAD_SINIT_51.BIN; Mobile Intel GM45, GS45, and PM45 Express Chipset before GM45_GS45_PM45_SINIT_51.BIN; Intel Q35
Express Chipsets before Q35_SINIT_51.BIN; and Intel 5520, 5500, X58, and 7500 Chipsets before SINIT ACM 1.1 allows local users to bypass the Trusted Execution
Technology protection mechanism and perform other unspecified SINIT ACM functions via unspecified vectors.

SMM memory corruption
SMM memory corruption
SMM memory corruption

SMM memory corruption

SMM memory corruption

SMM memory corruption
SMM memory corruption
SMM memory corruption

SMM memory corruption

SMM memory corruption
SMM memory corruption

Coreboot SMI handler verification project

We are going to verify that the SMI handler will never write to the code areain
System Management RAM.

This will prevent at least 20 known CVEs.

Verified Software Toolchain is used for formal verification of the C code.
Coreboot is a project to develop open-source boot firmware.

Coreboot is used on ChromeOS devices.

Coreboot with Gemini Lake chipset & Google Octopus mainboard are used on
more than 25 Chromebook models including ASUS Chromebook CX1101,
Lenovo ldeapad 3, and Samsung Chromebook 4.

Porting Coreboot SMI handler to VST

#ifdef __ VERIFICATION CHANGE _
write32 ((void *) ((uint8 t *)spibar + SPIBAR DLOCK), dlock);

#else

write32 (spibar + SPIBAR DLOCK, dlock);
#endif

Coreboot: 11,802 files/1,769,995 LoC

Gemini Lake SMI handler: 367 files/57,821 LoC

Binary size of compiled SMM code: 622 Kb

168 modifications to the source code were introduced for compatibility with
Compcert & VST.

e We have ensured that code with and without our changes compiles to exactly the
same binary.

Example of integer-to-pointer casts

const uintptr t pci mmconf = (uintptr t)CONFIG ECAM MMCONF BASE ADDRESS ;

static inline volatile union pci bank *pci map bus (pci devfn t dev) {
return (void *)&((u8 *)ptr of int(pci mmconf)) [PCI_DEVFN OFFSET (dev)];
}

void pci_s write config8 (pci_devfn t dev, uintlé_t reg, uint8 t value) ({
pci_map bus (dev)->reg8[reg] = value;

}

e Integer to pointer casts frequently occur in coreboot code but are not supported by VST

e Enhanced Configuration Access Mechanism (ECAM) can be used for PCle configuration reads
and writes.

° function shown above is from Coreboot.

VST concrete addresses reasoning extension

void * ptr of int (uintptr_t);

uintptr_t int_of ptr(void ¥*);

Definition int of ptr spec : ident * funspec := Definition ptr of_ int spec : ident * funspec :=
DECLARE ptr of int

DECLARE int of ptr
WITH p : val, a : int

WITH p : val
PRE [tptr tvoid] PRE [tuint]
PROP () PROP (val has address p a)
PARAMS (p) PARAMS (Vint a)
SEP () SEP ()
POST [tuint] EX (a : int), POST [tptr tvoid]
PROP (val has address p a) PROP ()
RETURN (Vint a) RETURN (p)
SEP (). SEP ().

VST uses abstract memory model, while we need to prove properties about concrete addresses.
SMI handler code uses type casts between pointers and integers which are not supported by VST.
and functions were introduced and their specifications were axiomatized.
says that pointer value corresponds to the address in concrete memory model.

Integrating concrete memory model into VST

Definition _pci mmconf OBJ : ident := $"oci mmconf OBJ". Definition Vprog : varspecs.

Definition pci mmconf size : Z :=1048576. assert (vs : varspecs) by mk varspecs prog.

Definition pci_mmconf type : type := exact ((pci_mmconf OBJ, pci mmconf type) :: vs).

tarray tuchar pci mmconf size. Defined.

Parameter has address : block -> offset -> int ->Prop.

Axiom pci mmconf address rel : V (gv : globals) (b : block) (p : ptrofs),
gv _pci_mmconf OBJ = Vptr b p ->
has address b p pci mmconf addr.

e |norderto apply in VST proof we need to satisfy its precondition: provide an
address and a pointer, and prove that this pointer is related to this address.
° is not related to a pointer to valid C object, it is the base

address of PCle memory-mapped configuration area.
e Wecreate a “fake” VST object for PCle memory-mapped configuration area and add an axiom about its

relation to the base address.
e We will have several such assumptions for pointer-address relations in the SMI handler specification.

From these we can deduce that memory areas used for write don’t overlap with SMRAM.

VST specification for pci s write config8

Definition pci_s write config8 spec : ident * funspec :=
DECLARE pci s write config8
WITH gv : globals, 1lb : list byte, dev : int, reg : int, value : byte
PRE [tuint, tushort, tuchar]
PROP (Int.unsigned dev < pci mmconf size - pci mmconf dev size;
Int.unsigned reg < pci mmconf dev size)
PARAMS (Vint dev; Vint reg; Vubyte value)
GLOBALS (gv)
SEP (data_ at Tsh tuint (Vint pci mmconf addr) (gv _pci mmconf);

Axiom pci mmconf address rel
V (gv : globals) (b : block) (p : ptrofs),
gv pci mmconf OBJ = Vptr b p ->

has address b p pci mmconf addr.

data at Tsh pci mmconf type (map Vubyte 1lb) (gv _pci_mmconf OBJ))

POST [tvoid]
PROP ()
RETURN ()
SEP (data at Tsh tuint (Vint pci mmconf addr) (gv _pci mmconf);

Definition pci mmconf type : type :=

tarray tuchar pci_mmconf size.

data_at Tsh pci mmconf type (map Vubyte (pci s write config8 lb dev reg value)) (gv _pci mmconf OBJ)).

SMM region overlap runtime checking

static inline bool region_ overlap (const struct region *rl,

const struct region *r2) {
return (region_end(rl) > region_offset(r2)) &&

As mentioned in the coreboot documentation [1:

“In order to not leak SMM internals or accidentally (region offset (r1) < region end(r2));
overwrite parts of SMM, ring0 provided data (pointers, - -
offgets, sizes, ...) must be checked before using them
in SMM.

There exist two methods to verify data:
Example of incorrect behaviour:

/* Returns true if the region overlaps with the SMM */
struct region rl {SIZE MAX - 10, 20};

struct region r2 {SIZE_MAX - 20, 15};

bool smm region_overlaps_handler (struct region *r);
/* Returns true if the region overlaps with the SMM */
SIZE_MAX

static inline bool smm points_to_smram(const void *ptr, const size_t len);

2 M

https://doc.coreboot.org/security/smm.html

Corrected region overlap check

Original C code Corrected C code

static inline bool region overlap correct(const struct region *rl,

static inline bool region overlap (const struct region *rl,
const struct region *r2) {

const struct region *r2) { ! ! .
return (region end(rl) > region offset(r2)) && if (region_sz(rl) || region_sz(r2) 0)
T - return false;

(region_offset(rl) < region_end(r2)); size_t sizel = min(region sz(rl) - 1, SIZE MAX - region offset(rl));
size t size2 = min(region_sz(r2) - 1, SIZE MAX - region_offset(r2));
return (region offset(rl) + sizel 2 region offset(r2)) &&

(region offset(rl) < size2 + region offset(r2));

Functional specification for the original: Functional specification for corrected function:

Definition region overlap correct (rl r2 : region int) : bool :=

Definition region overlap (rl r2 : region
if Int.eq (region sz rl) Int.zero || Int.eqg (region_sz r2) Int.zero then false

(Int.ltu (region offset r2) else
region_end_int rl)) && let sizel := int min (Int.sub (region_sz rl) Int.one)
(Int.ltu (region offset rl) (Int.sub (Int.repr Int.max unsigned) (region offset rl))

(
(
(
(

region _end int r2)).
int min (Int.sub (region_sz r2) Int.one)

(Int.repr Int.max unsigned) (region_offset r2))

Abstract specification:

Definition in region (a : Z) (r : region Z) : Prop := a 2 region offset r N a < region end Z r .

Definition region_overlap rel Z (rl r2 : region Z) Prop := I (a : Z), in region a rl A in region a r2.
Definition region_overlap_rel (rl r2 : region int) Prop := region_overlap_rel Z (region_Z of int rl) (region_Z of int r2).

VST specifications for region overlap

VST specifications

Definition region overlap spec : ident * funspec :=
DECLARE region_overlap
WITH sh: share, pl : val, p2 : val,
rl : region int, r2 : region int
PRE [tptr tregion, tptr tregion]
PROP (readable_share sh)

Definition region_overlap correct_spec : ident * funspec
DECLARE region_overlap_correct
WITH sh: share, pl : val, p2 : val,
rl : region int, r2 : region int
PRE [tptr tregion, tptr tregion]
PROP (readable_ share sh)

PARAMS (pl; p2)

SEP (region_at sh rl pl; region_at sh r2 p2)
POST [tbool]

PROP ()

RETURN (Val.of bool (region overlap rl r2))

SEP (region_at sh rl pl; region_at sh r2 p2).

PARAMS (pl; p2)
SEP (region_at sh rl pl; region_at sh r2 p2)
POST [tbool]
PROP ()
RETURN (Val.of bool (region overlap correct rl r2))
SEP (region_at sh rl pl; region_at sh r2 p2).

For corrected function functional specification implements abstract specification:

Lemma region rel func (rl r 8 L = ion ap correct rl r2 = true.

For old (incorrect) function exists a false negative:

Lemma false negative exists : I (rl r2 : region int),
(region overlap rl r2 = false) A (region overlap correct rl r2 = true).

Use of region overlap in brightness function

static void mainboard smi brightness down(void) { bool smm_region_overlaps handler (const struct region *r) {
uint32_t reg32 = pci read config32(PCI DEV(1, 0, 0), PCI BASE ADDRESS 2) const struct region r_smm = {SMM BASE, SMM DEFAULT SIZE};
~0x£f; return region overlap(&r_smm, r);
u8 *bar = (void *) (uintptr_t)reg32; }

/* Validate pointer before using it */

if (!bar ||
return;
* (bar + LVTMA BL MOD LEVEL) &= 0x£0; #deflne LVTMA_BL_MOD_LEVEL O0x7af9
if (* (bar + LVTMA BL MOD LEVEL) > 0x10) #define SMM BASE 0xa0000
*(bar + LVIMA_BL_MOD_LEVEL) 0x10; #define SMM DEFAULT SIZE 0x10000

Integer overflow bug does not manifest with arguments used in the brightness function:

Lemma brightness correct : V off : int,
region_overlap r smm (Int.and off (Int.not (Int.repr Oxf)), Int.add.VTMA BL MOD LEVEL Int.ong =
region_overlap correct r smm (Int.and off (Int.not (Int.repr 0xf)), Int.addLVTMA BL MOD LEVEL Int.one).

Project status

Finished feasibility study part of the project.

Ported Coreboot SMM code for Gemini Lake chipset to VST and verified that
our changes produce the same binary as unchanged code.

Developed an approach of dealing with pointer<integer casts and concrete
memory addresses.

Proved some sample functions to validate the approach.

Discussed with some potential business partners to confirm product business
viability.

Intend to proceed to the next stage: proving all of Coreboot SMI handler code
for Gemini Lake chipset.

RISC-V ISA

e RISC-Vis new open source instruction set architecture that was originally
designed to support research and education, but aims to become a standard
open architecture for industry implementations.

e RISC-V modes of execution: Umode [Applications] umode

o U-mode: for user applications i System Calls

S-mode: for operating system R _ T
M-mode: for firmware

H-extension to support hypervisors ¢SB|

O O O

RISC-V firmware

e Supervisor Binary Interface (SBI) specification defines how firmware running in M-mode
and OS running in S-mode can interact with each other.

e OpenSBIlis an open-source reference implementation of RISC-V run-time firmware
adhering to SBI specification.

e We conjecture that OpenSBI may be subject to similar privilege escalation vulnerabilities
as x86 SMI handlers.

—p LOads
suxs P JUMPS

U-Boot SPL loads U-Boot proper as well
specific

Coreboot loads Linux directly

Questions?

Contact: Vadim Zaliva <lord@digamma.ai>

Backup slides

Compcert compatibility changes to SMM code

e Arithmeticon pointers: added additional type casts.

° operator used in macros: specialized for particular types.

e Statements in expression extension used in macros: replaced with one-line
macros implementations or manually unfolded.

) attribute: replaced with

e Other unsupported attributes: replaced with supported alternatives or
removed.

e Too bigvaluesinenums: replaced with d constants.

e Struct empty initializers :replaced with

